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Abstract. In this paper, interaction of discontinuous waves with hyperboloid heterogeneities in anisotropic elastic

media is investigated. It is shown that the interactions are accompanied by formation of reflected and refracted quasi-

longitudinal and quasi-shear discontinuous waves which can be focused or scattered by elastic "mirrors" and "lenses"

depending on their geometric outlines and acoustical properties. The set up problem solutions can be used for discovering

the most and least seismically hazardous zones in the earth crust and for interpretation of geophysical data about geological

rock structures.
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1. Introduction
Elastic waves induced by seismic phenomena, explosions, and other causes are studied in seismology for

establishment of general regularities of earthquakes and processes associated with them, as well as for

identification  of  the  Earth’s  crust  structure.  When  investigating  the  seismic  effects,  the  important  role  is

assigned to dynamic theoretical models including discontinuous waves. These waves can be provoked by

volcanic phenomena or by collapses and ruptures of the pre-stressed abyssal rock layers (Eiby 1980, Kasahara

1981). As a rule, they have a clearly defined shock character caused by the fact that the rock medium is in a

non-deformed state ahead the moving surface of the wave front, the functions of stresses and strains have finite

values behind the surface, and they experience discontinuities at the surface itself. Different practical questions

of the seismic wave interacting with rock inhomogeneities are studied by Arif et al (2012), Bidgoli and Jing

(2014), Brule (2014), Dolan and Haravith (2014).

The  ability  of  the  tectonic  medium  to  permit  the  passage  of  the  discontinuous  waves  is  connected  with  the

orderliness of its rock structures. The more ordered is the structure the more pronounced shock type wave with

the  less  thickness  of  the  transition  layer  at  its  front  can  be  allowed to  pass  through the  rock  medium.  At  the

same time, the discontinuous character of the propagating wave is associated also with the scaling factor of the

dynamic process which is determined by the relationships between dimensions of the elastic medium boundary

surfaces, sizes of the medium particles and values of geometrical parameters of the moving wave front surface.
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For this reason, every so often the phenomena of seismic wave propagation in the tectonic structures can be

simulated with the use of discontinuous functions.

In the event that during the wave front propagation its smoothness is broken owing to its surface rearranging,

the peaks of strains and stresses are initiated at the sites of the geometric singularities formed. The effects of this

sort are most typical for elastic materials possessing properties of anisotropy and heterogeneity inherent in rock

media. In this case, the additional distortions of the wave front regularity come into being at the tectonic

anomalies in the shapes of lenses and distortions of the rock layers. These anomalies can concentrate or scatter

the wave energy depending on their outlines and ratios between values of the physical parameters of the media.

The discussed phenomena are usually characterized by short duration of highly intensive initial field of

pressure, which at the original stage of time is concentrated, as a rule, in a small domain adjacent to the zone of

impact initiation of the wave and by transformation of the wave front surface as it propagates. Inasmuch as in

this case the boundary of the domain chosen for calculation evolves with the wave front progress, the solution

has to be found in the family of discontinuous functions evolving in time. So the traditional classical and

numerical methods turn out to be of low efficiency for analysis of the similar processes.

In solution of these type problems a prominent role is played by the methods of geometrical optics (Fedorov

1968, Karal and Keller 1959, Kravtsov and Orlov 1980, Ogilvy 1990) in non-dispersive media. They are

correlated with application of a ray coordinate system wherein families of the coordinate surfaces coincide with

the evolving surfaces of the non-stationary waves. Formally, this approach is realized through representation of

the wave equation solution in terms of a ray series. With its use, an eikonal equation and transport equations

system are constructed. The former is a non-linear partial differential equation describing the front surface and

the ray aggregate which is referred to as “kinematic equation”. The transport equations constitute a system of

linear partial equations. They determine the field functions at the front surface and behind it which are referred

to as “dynamic equations”. With this approach being in use, the special cases can be distinguished, when the

aggregates of the rays are produced, which have common envelope (caustics), where the rays are focused and

the field intensity increases indefinitely. In geometrical optics, the caustics classification is performed on the

basis of the theory of singularities of differentiable mappings - the theory of catastrophes (Arnold 1990, Arnold

et al. 1984, Poston and Stewart 1978).

In studies of discontinuous (shock type) waves propagation in elastic media, the greatest attention is, as a rule,

devoted to geometrical construction of the evolving field-function discontinuity surfaces and calculation of the

discontinuity magnitudes, which provide the most complete information about the wave front transformation and

the intensity of an impulse carried by the wave at each point of the front surface. Because of this, usually the

greatest attention is placed on the zeroth approximation of the ray method [19], providing good quantitative

description of the wave phenomenon in a small vicinity of the wave front. Its application allows one to
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construct the evolving front, to determine the wave polarization vector at every point of its surface, to calculate

the discontinuities magnitudes of the functions of strains and stresses and also the wave phase as functions of the

ray coordinates. With this method, the zeroth term of the ray series is taken into account, which can be

calculated independently of other ones.

The zeroth approximation of the ray method used jointly with the locally plane approach [18, 19] allows one to

state the problem about interaction of the shock waves with interfaces between elastic media possessing

different mechanical properties. This problem is associated with the necessity to construct kinematically the

front surfaces of reflected and refracted waves with different polarizations and to calculate dynamical

parameters of the field discontinuities on these fronts.

The important advantage of this approach is associated with the fact that in order to find the zeroth term of the

expansion  it  is  not  necessary  to  solve  any  differential  equation,  because  the  value  of  the  stress  function

discontinuity at the wave front is expressed through its initial value and a ratio between geometrical divergences

of the rays at the initial and terminal points of the ray. In this event, it is not always essential to calculate the

exact values of the discontinuity, but is possible to restrict ourselves to evaluating whether their values enlarge

or diminish as the front point moves along the ray. This evaluation can be done with the help of visual analysis

of the system of rays and fronts through separation of the ray focusing points and zones of their divergence.

General regularities of the ray transformations after their interactions with interfaces between homogeneous

isotropic media are determined by focal properties of their surfaces and acoustic stiffnesses of the elastic media.

Therefore, it is important to consider the reflectors of simplest shapes and to analyze wave diffractions in them.

Amidst such surfaces, there are rotary ellipsoids, Fig.1a, hyperboloids, Fig.1b, and paraboloids, Fig.1c.

Axial cross-section of the ellipsoid is ellipse with foci 1F  and 2F , not lying in the rotary axis 2Ox . For this

reason, it is not possible to prognosticate peculiarities of the ray transformations by ellipsoidal heterogeneities.

Gulyayev and Ivanchenko (2003, 2004) and Gulyayev et al (2004) studied the problem of the wave front

reshaping by free ellipsoidal surfaces, interfaces, concave and convex lenses. It was revealed that the effects of

the wave focusing and scattering can be attained if the anisotropy parameters of the elastic media are duly

chosen.

Focus F  of a hyperboloid surface is locate in its rotary axis, Fig.1b, and so it can be anticipated that the

property of well-ordered transforming of the waves by this interface is exhibited more distinctly. This

hypothesis is not tested till now and is of some interest.

The focusing properties of the paraboloidal surface, Fig.1c, in homogeneous isotropic media are well known but

influence of the medium anisotropy on this effect is not also analyzed. In this paper, the problem associated with

analysis of focusing and scattering plane discontinuous waves by hyperboloidal interfaces and lenses is

examined. The effects of wave transforming by paraboloidal surfaces will be analyzed later.
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In seismology, these questions are topical for investigation of wave processes occurring in the earth's crust and

for description of behavior of seismic waves in the vicinity of tectonic inhomogeneities, where the waves can

endure the effects of focusing or scattering. These effects manifest themselves most clearly in the convex and

concave parts of the interfaces between rock structures.

It is known that there are no ways of prognosticating and eliminating the earth-quakes, but using the stated

problem solutions it is possible to find the tectonic regions where the natural seismic waves can focus and

concentrate their energy provoking collapse of above-ground and underground constructions or where the

waves disperse without damage for the environment.

In the course of seismic reconnaissance of mineral resources, the considered results are useful for theoretical

interpretation of geophysical data about the explored geological rock structures. The problem solution can also

be used for analysis of explosion wave influence on environment and for elaboration of rational methods for

pursuance of explosion works eliminating the possibility of artificial earthquakes generation at predetermined

regions.

2. Technique of numerical simulation
In the analysis of discontinuous waves propagation in anisotropic elastic media, the equations of dynamic

equilibrium of its particles in the Cartesian coordinate system 1x , 2x , 3x   are chosen in the form:
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where  is the density of the medium; 21,uu , and 3u are elastic displacements; t is  time;  and pqikc ,  are  the

components of the tensor of elastic parameters of the medium. Generally the pqikc , tensor has 81componens. In

the case under study, the so called “transversely isotropic media” is characterized by 5 elastic parameters. Due

to the symmetry of this tensor with respect to the 2Ox  axis and the fact that it has only five irreducible
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Figure 1 Types of hypothetic interfaces in rock media: ellipsoidal (a); hyperboloidal (b);
paraboloidal (c).
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parameters, it can be brought to a two dimensional form:
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where  and  are the Lame’s coefficients and ml, and p are the anisotropy parameters, which distinguish

the medium under consideration from the isotropic one with 0l m p .

The solution to system of Eqs. (1) is represented in the form of a plane monochromatic wave
vtrnAu ike (3)

with a phase number k  and a phase velocity v . The phase fronts of this wave will be surfaces of constant phase

constvtrn  locally perpendicular to the unit vector n  and traveling with velocity nv v . The magnitude

of the phase velocity v  and the vector of wave polarization A  are determined from the homogeneous system of

algebraic equations [7, 19]
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as eigenvalues and eigenvectors of the symmetric and positively defined Christoffel matrix
3

1,
1

,pk pkpqikiq nnc  where 3,2,1, qi . The condition of existence of a nonzero solution for the

homogeneous system in Eqs. (4) is written in the form of a cubic equation in the squared phase velocity as
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For any preliminarily chosen direction of the unit normal n  to the front, the roots of this equation are three

positive numbers that allow the determination of the phase velocity magnitudes and their arrangement in

descending order: 0vvv 321 nnn . The maximum propagation velocity corresponds to the quasi-

longitudinal wave, while the remaining velocities correspond to two quasi-transverse waves with different

polarizations. The polarization vector rA  for each of the three 3,2,1r  waves possible in anisotropic media

can be found by substituting the corresponding squared phase velocity into system of Eqs. (4) and determining

the eigenvector of the matrix of coefficients of the system of equations
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The time-dependent phase front surface of an elastic wave is described by the relationship 0,, 321 txxx

where  is some function satisfying the first-order partial differential equation (Petrashen 1980)
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which extends the eikonal equation of geometrical optics to the case of elastic waves in anisotropic media.
Partial derivatives of the function  with  respect  to  the  Cartesian  coordinates  are  the  components  of  the

refraction vector p  and are determined by the formulas

nn rkk xp v// 3,2,1k

To construct the frontal surfaces of an elastic nonstationary wave in a homogeneous anisotropic medium

constcconst pqik ,, , we must find solutions to Eqs. (7) that can be reduced to a system of ordinary

differential equations by using the method of characteristics:
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In the system of Eqs. (8), three first equations allow the determination of three components of the ray velocity

vector k
r x,n  along which the wave travels. Another group of equations shows that these rays are

rectilinear in a homogeneous anisotropic medium.

Hence, the kinematic problem of constructing the evolving front of a non-stationary shock wave in a

homogeneous anisotropic medium is reduced to the construction of a system of rectilinear rays whose directions

satisfy Eqs. (8) and correspond to a given sequence of normal vectors n  to the wave front. For a certain value

of constt , the locus of the points lying on these rays and located at a distance tn  from the elastic wave

source, forming the front surface.

The built up system of rays and fronts allows to proceeding to the determination of the wave intensity in the

vicinity of its front. For the realization to be performed, it is convenient to use Eqs. (1) solution-expansion in

series along a ray as follows:

0
321321 ,,,,

m
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m
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where the functions mf , satisfying the correlations yfyf mm 1 , are supposed to be multiplied by the

Heaviside function and to possess discontinuities of their derivatives (23Petrashen 1980).

If the problem of investigation of the wave behavior in the front nearest neighborhood is set up, only one term
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0m  is retained in Eqs. (9) and for the vector 0u  to be calculated, the system of homogeneous equations
3

,,

00
, 0

qpk
iqpkpqik uupp 3,2,1i (10)

is used. Its solution is represented in the form [19]:
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where , ,  is the system of ray coordinates and the functional determinant ,,/,, 321 xxxJ  of

the transformation of the ray coordinates into Cartesian ones is the measure of the ray divergence in the ray

tube.

The presented correlations permit to trance the evolution of a discontinuous wave front and to calculate

magnitudes of the field functions discontinuities on its surface outside the interface between anisotropic elastic

media with differing properties.  The interaction of rays and wave fronts with the boundaries between

anisotropic  media  with  different  physical  parameters  makes  their  geometries  much  more  complicated.  In  the

general case, the front incident on the boundary generates three refracted and three reflected fronts of differently

polarized elastic waves.

Consider a plane discontinuous wave traveling along the 2Ox  axis and passing through a convex anisotropic

lens, and assume that the 2Ox  axis coincides with the symmetry axes of both transversely isotropic medium and

lens. This is a special direction in which the vectors of the ray and phase velocities coincide, so that the wave

appears purely longitudinal. Because of the axial symmetry of the problem, an investigation of the behavior of

traces of front surfaces in some plane containing the 2Ox  axis  appears  to  be  sufficient  for  the  solution.  We

distinguish a free surface of elastic anisotropic medium, Fig.2a, and interface, Fig.2b, between two transversely

isotropic media with different elastic parameters: the initial medium (with the incident wave), whose parameters

are marked with subscript I, and the internal medium of the lens marked with subscript II , Fig.2b. At every point

M  of the first boundary surface of the lens (boundary 1G  between elastic media I and II) the incident ray

produces a beam of two refracted and two reflected rays whose directions and phase velocities satisfy Snell's

law [7]

v
sin

v
sin

v
sin 3,2,1, (12)

where is the angle of inclination of the tangent to the surface 1G  at the point M of ray incidence; 1  and 2

are the angles between the 2Ox  axis and the directions of the phase velocity vectors of the quasi-longitudinal qP

and quasi-transverse qS  waves reflected into medium I; 1  and 2  are the corresponding angles for waves
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refracted in medium II (in the lens); and v , v , and v are the phase velocities of the incident longitudinal

wave and reflected and refracted waves (subscripts 1 and 2 correspond to quasi-longitudinal and quasi-

transverse waves, respectively). The characteristic feature of Snell's law of  Eqs. (12) for anisotropic media is

that the denominators v , and v  are explicit functions of the corresponding angles  and  and implicit

functions of the angle  as are the numerators.

The refraction and reflection angles  and 3,2,1,  at a point M of boundary 1G  are obtained from

the nonlinear system of  Eqs. (12), which is solved using the Newton method combined with the algorithm of

solution continuation with respect to a parameter [17]. The angle of inclination of the tangent  appears to be a

convenient choice for the leading parameter. With such a choice, for the first equation of system of Eqs.(12)

with certain known parameter n  and vectors nv , a small increment of the leading parameter n  will

cause the following increments of the pointing angles of elastic waves reflected into medium I:

rnn

nn
n

/vsin-vcos
vcosvcos

(13)

where nnr vsin-vsin  are the residuals of the equations at the considered step.

Rays of quasi-longitudinal and quasi-transverse waves outgoing from point M are incident on the boundary

surface 2G . At the points pM  and sM  of incidence on surface 2G  each wave produces new beams of quasi-

longitudinal and quasi-transverse waves refracted into medium I and reflected into the lens (medium II). Phase

Figure 2 Schematic diagrams of orientations of the phase velocity vectors at the free
surface of elastic medium (a) and interface G  between elastic media (b).
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velocities and vector directions of the rays of every beam again satisfy Snell's equations, which now have the

form:

v
sin

v
sin

v
sin 2,1, (14)

The solution of system of Eqs. (14) is also performed according to the step-by-step procedure. By way of

example, a small variation n  of the angle of inclination of the tangent to surface 2G  will cause increments of

the pointing angles of phase velocity vectors of the refracted waves of both types:

nn r
f

ff
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21 (15)

Here, we introduced the functions

n
1 vcosvsin

d
df n ,

vcosvcos n
2

nnf ,

vcosvsin n
n

nn

3 d
df

and the residual of Eqs. (11) is nnvsinvsin nnr . The implementation of successive

calculations by formulas like of Eqs. (13) and (15) requires the knowledge of some initial state , v , 0  and
0v . In  the  case  of  the  axially  symmetric  lens  under  consideration,  a  convenient  choice  of  the  initial

direction is 0 , which corresponds to constructing a family of reflected and refracted rays beginning with

the  ray  directed  along  the 2Ox axis, because this ray produces rays directed along this very axis at both lens

surfaces. For nonzero denominators, formulas like of Eqs. (13) and (15) allow the determination of a unique set

of increments for pointing angles of all phase velocity vectors of both types of waves at both lens surfaces.

Angles or which the denominator on the right-hand side of Eqs. (13) and (15) vanishes,

0vsin-vcos
n

n ,

0vcosvsin n
n

nn

d
d 2,1

(16)

are the conditions of bifurcation of the solution. The solution continuation through this state requires that the

terms of the second (third, and so on as required) order should be added to these equations.

Condition of Eqs. (16) of a possible non-uniqueness of the solutions to system of Eqs. (13), (15) corresponds to

the convergence (contact) and intersection of reflected and refracted rays at one lens surface. These effects can be
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accompanied by the phenomenon of quasi-total internal reflection [9].

Moving away from lens surfaces, rays can touch and cross one another forming the envelopes of ray families

called caustics. Since the singularities of the wave front appear in caustics, the focusing occurs at them, which is

accompanied by an infinite growth of the stress field intensity at the points of geometric singularities (in the

framework of the theory of ideal elasticity).

The variation of the strain discontinuity at the moving front behaves depending on the geometry of the front

surface and is characterized by the geometric divergence of rays, which is a function of n  for anisotropic

media. The geometric divergence of rays can be determined by the formula [19].

,,
,,

,,,
J

cLL      (17)

where ,c is a constant coefficient and ,,J  is the Jacobian of the transformation of the ray coordinate

system to the Cartesian coordinate system. It is used in formula of Eqs. (11). The Jacobian is calculated by the

formula

333231
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kx iz1
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1
, k
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3

1
2  and k

k

kx iz
3

1
3  are the coordinate vectors of the curvilinear ray

coordinate system , , and  can be determined numerically by using the finite difference scheme for

calculating partial derivatives.

 3. Results and their discussions
The outlined technique of ray method and conception of the locally plane approach were used for computer

simulation of the phenomena of reflection and refraction of discontinuous qP -waves in the course of their

interaction with hyperboloid heterogeneities in transversely isotropic elastic media. The physical parameters of

the media are chosen to be equal Pa10
1 1097.4 , Pa10

1 1091.3 , 11 4.0l , 11 2.0m ,

111 21.0p , 3
1 /2650 mkg , Pa9

2 1041.3 , Pa10
2 1036.1 , 22 4.0l , 22 2.0m ,

222 21.0p , 3
2 /2760 mkg . At given values of the media characteristics, their physical properties are

symmetrical relative to the 2Ox  axis, so purely longitudinal P -waves and purely shear S -wave are free to

move along it.

Firstly consider the case when plane discontinuous P -wave 1, propagating along the 2Ox  axis in medium I,

interacts with free boundary hyperboloid surfaces, Fig.3. Their generatrices are determined by the equation
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a
bx 2

1
2

2 ,       (19)

where mb 150  is  the  semi-distance  between  the  apices  of  the  hyperbolas  of  Eqs.  (19);  the  ratio 5.0/ ab

determines the angle baarctg /2  between the hyperbola asymptotes; h is the hyperbola displacement

along the 2Ox  axis, it assumes value 12m for the case in Fig.3a and value 9m for Fig.3b; signs " - " and " + "

correspond to the convex and concave surfaces, Fig.3.

As a consequence of the incident wave diffraction at the free surface G , quasi-longitudinal qP -wave 2 and

quasi-shear qS -wave 3 are generated. In the first case, Fig.3a, the reflected rays of both types are focused. As

this takes place, the focal length of qP -wave 2 turned out to be far less than is the one of the qS -wave.

Besides, its focus is not clearly defined and it falls outside the limits of Fig.3a.

According to correlations of  Eqs. (9-11), (17), (18), the points where the rays intersect are connected with

geometric singularities [12, 13]. At these points the wave intensity tends to infinity. The focusing effect can be

also peculiar to refracted waves if the hyperboloid surface G interfaces media I and II, Fig.4. In this case, if the

G  surface is convex, Fig.4a, the refracted qP -wave 2 scatters while the appropriate qS -wave 3 focuses.

At the same time, both of the reflected waves 4,5 are focused, though focal zone of qS -wave 5 is located in a

more remote range. For the concave interface G  refracted qP -wave 2 focuses and qS -wave 3 scatters, whereas

both of reflected waves 4 and 5 scatter, Fig.4b.
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Figure 3 Focusing and scattering plane discontinuous waves by hyperboloid free surface.

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 
ISSN 2229-5518 972

IJSER © 2014 
http://www.ijser.org

IJSER



The algorithm suggested above was used to investigate the diffraction of a plane longitudinal wave by a convex

axially symmetric lens bounded by hyperboloidal surfaces whose traces on the symmetry plane 21xOx  are

2
121 900/1250200: xxG ,

2
122 300/11501200: xxG

Firstly, the case was considered when the ambient medium and the lens have the properties of materials I and II,

respectively. Fig.5a shows the system of rays belonging to the longitudinal incident wave 1, rays of quasi-

longitudinal wave 2 refracted into the lens and rays of quasi-longitudinal wave 3 produced by the latter in

medium I behind the lens. In Fig.5a, we did not show quasi-longitudinal rays reflected from both lens surfaces,

all quasi-transverse rays and evolutions of fronts (excluding the fronts of the quasi-longitudinal wave behind the

lens). It is seen that notwithstanding the fact that the lens surfaces have differing curvatures, the initially parallel

rays of the elastic wave are focused after their passage through the acoustically softer lens in the same way as

light rays in geometrical optics. But the lens focus is not a point; instead, each pair of symmetric rays has its
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Figure 4 Focusing and scattering plane discontinuous waves by hyperboloid interfaces.
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own point of intersection at the symmetry axis, and these intersection points form a focusing zone. When the

places of elastic media I and II are interchanged with the parameters used above, the lens under consideration

becomes divergent, Fig.5b. If a lens is biconcave its abilities to focus or scatter wave rays change to apposite

ones in comparison with biconvex lenses. Fig.6 corresponds to the concave lens with parameters of surface

mbmaG 150,600: 111  and mh 6001  and mbmaG 150,600: 222  and mh 4002 .

In tectonic structures, the curved layers of their rocks can be one of their typical anomalies. In this connection it is

important to analyze how the layer curvature influences on the character of wave front transformation when it

passes through the layer. In Fig.7a, the curvilinear layer of rock medium II is bounded by surfaces 1G  and 2G

with respective parameters mbma 150,300 11  and mh 4001 , mbma 250,900 22  and mh 8002 . In

Fig.7b, the layer is turned over and it has properties of medium I. It can be seen, that in both cases the layers

focus the longitudinal waves.

It is pertinent to note that according to Eq. (18) the ,,J  values tend to zero at focal zones, so as

Eq. (11) testifies, the stress discontinuities acquire infinite values in their vicinities (in the framework of the

theory of ideal elasticity).
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Figure 5 Focusing and scattering plane discontinuous waves by biconvex lenses.
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Figure 6 Scattering and focusing plane discontinuous waves by biconcave lenses.
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Figure 7 Focusing plane discontinuous waves by curved layers.
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4.  Conclusions
1. With the aid of the elaborated technique based on the ray method, the peculiarities of propagation and

interaction of discontinuous waves with hyperboloid interfaces G  between transversally isotropic elastic media

are studied.

2. Using the ray technique, the phenomena of focusing and scattering discontinuous waves by

hyperboloid free surfaces, interfaces, elastic lenses, and layers are analyzed. It is shown that abilities of the

interfaces and lenses with the same geometrical parameters to focus or scatter the wave and thereby to amplify

or attenuate the wave intensity are determined by the mechanical (acoustical) properties of the elastic rock

media, as well as by their passage order.

3. The proposed approach to the problem of wave analysis in the vicinities of tectonic anomalies can be

employed for a search for the most and least seismically dangerous zones at the Earth’s surface in building

constructions of high degree risk (nuclear power stations, dams, dwelling blocks, etc.).
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